高速搅拌机源头制造杏彩网页平台登录搅拌机
全国咨询热线:136-6889-0909
当前位置: 首页 > 产品展示
杏彩网页平台:储能系统中二氧化碳压缩机的研究进展
杏彩网页平台:储能系统中二氧化碳压缩机的研究进展

杏彩网页平台:储能系统中二氧化碳压缩机的研究进展

来源:杏彩网页平台登录 作者:杏彩网页平台娱乐登陆
产品详情

  CO2是世界公认温室气体的主要来源,对大气中的CO2进行回收利用已经成为可以减少CO2污染的有效措施之一。与空气相比CO2具有诸多优点,如CO2的热力性能好,气流密度高,液体粘度低,临界参数低(7.38 MPa,31.4℃),易于存储,做功能力强,传热性能好,安全无毒等。因此,CO2被广泛应用于跨临界和超临界功率循环、热泵循环、布雷顿循环以及储能系统中。

  目前因压缩CO2储能(compressed carbon dioxide energy storage,CCES)示范及实验系统缺乏,针对CCES系统中压缩机选型问题方面的研究较少。同时,由于CO2物性的特殊性,目前CO2压缩机还存在着部分问题。压缩机作为CCES系统中一个重要组成部分,对其进行深入研究和优化,将有助于提高整个系统的性能和效率。

  本文首先对CCES系统的发展历程、工作原理及工作特点进行了介绍;然后对不同类型CO2压缩机的应用范围、性能特点及国内外研究现状进行了总结;最后对CCES系统中压缩机应用的潜在问题进行了分析,并给出相应建议及改进思路。

  洛桑联邦理工学院的Morandin教授等人最早于2012年提出了将跨临界CO2循环与电热储能系统(thermo-electrical energy storage,TEES)相结合的想法,并首次将CO2作为工质应用于储能系统。

  杨科等以压缩空气储能(compressed air energy storage,CAES)技术为基础提出了以CO2为工质的CCES系统。CCES系统可依据系统中膨胀机出口处CO2的状态,区分为跨临界CO2储能系统(trans-critical carbon dioxide energy storage,TC-CES)和超临界CO2储能系统(supercritical carbon dioxide energy storage,SC-CES),即膨胀机出口处压力与温度低于CO2临界点(7.38 MPa,31.4℃)为TC-CES系统,高于临界点为SC-CES系统。然而,部分学者针对TC-CES、SC-CES系统对容器材料要求较高且储能密度相对较低的问题,提出了液态CO2储能(liquid carbon dioxide energy storage,LCES)系统,即高压侧与低压侧CO2均以低压液态(0.5~1.0MPa,-56~-40℃)形式储存,极大程度上降低了存储压力,提高了储能密度。近年来研究者提出将CCES系统与风电、光电、火电等其他能源系统进行耦合,以提高整体能源转换效率。但是,目前对CCES系统的研究还主要停留在系统理论设计及分析阶段,示范应用方面较为缺乏。

  图1为CCES系统的工作原理图。该系统主要由高、低压储罐、压缩机、透平以及蓄热蓄冷单元组成。依据能量转换方向的不同,CCES系统的工作过程可分为储能与释能2个工作阶段。在储能阶段,CCES系统利用富余的电能或风能等可再生能源驱动压缩机对经过蓄冷换热器的气态CO2进行压缩,压缩后的CO2再经过再冷器吸收压缩热后变为液态存储在高压储气罐内。在释能阶段,高压储罐内的液态CO2经过再热器加热后进入膨胀机,驱动透平膨胀机做功并对外输出电能,输出的电能可以用来消除用电高峰期电力供应的匮乏隐患,从而起到削峰填谷的作用。

  由于CO2在释放储存能量时膨胀速度较快,因此与CAES系统相比CCES系统的响应速度较快,通常其可用分钟级来衡量。同时,CCES系统规模可以为几十千瓦到几百兆瓦,灵活性较高。基于CCES系统响应速度快、灵活性高的特点通常适用于以下应用场景(表1)。

  CCES系统的转换效率通常为60%~70%,比起目前示范应用的CAES系统(表2),CCES系统的转换效率相对较高。由于对设备的耐高温、耐高压性要求较高,相比于CAES系统,CCES系统的成本相对较高。随着技术的发展和规模化应用,未来CCES系统成本有望降低。

  压缩机作为CCES系统储能阶段中的关键设备,其性能的优劣直接影响着系统的转换效率,因此对CO2压缩机性能研究对提升CCES系统的转换效率来说意义重大。

  按照压缩工质方式的不同,压缩机通常可以分为容积式压缩机、透平式压缩机2大类。容积式压缩机是通过改变压缩机工作腔内有效工作体积的方式提高工质的压力,即工质压力的提升是通过压缩工质体积实现的。透平式压缩机工质压力的提升则是通过使工质随着压缩机叶轮高速旋转的方式实现的。这种高速旋转可以让工质流动速度迅速增加,而随之而来的高速流动的工质会通过静止的扩压元件减速,从而达到增加压力的效果。

  依据容积式压缩机工作容积改变方式的不同,可以将其分为往复式压缩机与回转式压缩机2类。其中活塞式压缩机是应用最广泛的往复式压缩机;回转式压缩机则包括螺杆式压缩机、涡旋式压缩机、滑片式压缩机以及滚动转子式压缩机等。透平式压缩机可以依据气体流动方向的不同,将之区分为离心式压缩机与轴流式压缩机2类。

  由于各类压缩机结构及运行机理的不同,其适用的环境以及其本身所表现出的优缺点也不相同。图2总结了7类压缩机排气量及压力的适用范围,表3总结了这7类压缩机的工作特点及应用情况。对比各类压缩机的特点与适用范围可以得出以下结论:活塞式压缩机适用于高压力、中小流量以及较小排气量的压缩需求;回转式压缩机通常适用于低压、中小流量的压缩需求;透平式压缩机则通常被用于高流量需求的场合。因此在选取压缩机过程中,需要根据实际需求来选择合适的类型和规格。

  由于活塞式压缩机能够适应较广的压力范围,早在19世纪便开始使用。随着活塞式压缩机制造技术和维修技术的日益成熟,至今其仍在冰箱、空调制冷以及储能系统领域中被广泛应用。

  针对CO2活塞式压缩机工作过程的数学模拟方面。Tuhovcak等人对比分析了Disconzi、Adair、Annand、Woschni、Aigner 5种常用的传热模型。5种传热模型的共同点在于都使用了无量纲努塞尔数作为无量纲传热系数,并使用雷诺数表现气体的速度特性。在分别改变气缸表面温度、吸气温度以及曲轴转速的条件下,得出了以下结论:Adair模型对气缸表面温度变化的敏感性最弱;Disconzi模型中的热通量值及压缩阶段开始时气体温度值最大,气缸与气体之间传递的总热量不会随着曲轴转速的降低而发生显著变化。Wang T等针对二氧化碳活塞式压缩机内部传质的过程,提出了一种测量气缸内CO2质量的新方法。该方法可以有效地分析气缸内CO2质量的变化过程,通过该方法计算得到的CO2的质量流量的值与实际测量的结果进行对比其误差小于5.2%。

  Liu Z等采用数值方法研究了阀门参数对跨临界CO2活塞式压缩机性能的影响,经过模拟研究得出了阀门处的压力损失随弹簧刚度变化的规律及弹簧刚度过小会产生阀门回流的结论,同时也得出了随着阀片质量的变化,缸内气体质量的变化规律以及缸内气体压力随着进、排气口面积变化的规律。Guo Y等通动建立三维流固耦合(FSI)模型研究了压缩机的转速及阀门参数对阀门振荡和阀门延迟关闭的影响,并最终得到了可以预测特征转速的经验关系式。

  Ma Y[等开发了一种可以应用于跨临界CO2制冷循环的半封闭式活塞式压缩机(图3)。Ma Y通过改变压缩比、气阀参数及转速等设计参数,利用活塞式压缩机在跨临界CO2制冷循环中进行实验,首次对活塞式压缩机排气阀的运动进行了测量,并研究了影响排气阀运动的主要因素。这项研究为今后活塞式压缩机的研究提供了有益参考,同时也为跨临界CO2制冷循环的优化提供了实验基础。

  对于CO2活塞式压缩机来说,目前世界上占据重要市场的生产制造商主要包括意大利Dorin压缩机公司、Frascold压缩机公司、Refcomp压缩机公司以及德国Bizer制冷技术有限公司等。表4总结了这4个制造商代表性的CO2压缩机产品系列。因Bizer压缩机适配变频器的特点,2022年北京冬奥会采用了20台Bizer ECOLINE+系列的CO2压缩机,与传统制冷压缩机相比,可节能40%以上。

  西安交通大学的Wang B M等通过采用多元回归的分析方法得出了CO2双螺杆压缩机容积效率与等熵效率随吸入压力和压比变化的函数表达式,且该表达式的结果与实验数据的最大偏差小于8%。同时,该团队还研究了喷油压力对压缩机性能的影响,得出了在保证压缩机工作的前提下,为提高压缩机效率,喷油压力不宜取过高的结论。

  曲宏伟等针对CO2工质对螺杆式压缩机进行了优化设计,该CO2螺杆式压缩机转子型线采用新型双边非对称全圆弧包络线齿,压缩机的轴承采用滚动轴承与滑动轴承结合的方式,这大大提高了压缩机的使用寿命,具体如图4所示。

  剧成成等通过对螺杆式压缩机进行试验,发现螺杆式压缩机具有排气连续、运行稳定无气流脉动、维护方便且成本低等优点,非常适用于亚临界CO2制冷系统。同时,该团队指出,CO2螺杆式压缩机在运行过程中会受到多种因素的影响,导致工作条件多变,为了提高螺杆式压缩机的性能和稳定性,未来需要对其转子、型线、密封、油路等方面进行改进和优化。

  目前生产CO2螺杆式压缩机的厂商主要包括烟台冰轮集团有限公司、福建雪人集团有限公司以及上海汉钟精机股份有限公司等,表5总结了3个公司生产的CO2压缩机产品的特性。

  涡旋式压缩机是由一个固定渐开线的涡旋盘和一个呈偏心回旋平动的渐开线的运动涡旋盘组成,其工作原理是通过使运动涡旋盘不断转动改变压缩腔的体积,进而改变气体的压力。Hao J Y等建立了可以预测CO2涡旋式压缩机性能的模拟程序,并分析了压比及压缩机转速对压缩机效率的影响,程序模拟结果与实验结果进行对比误差在5%以内。

  切向泄漏是CO2涡旋式压缩机普遍存在的问题,Rak J等针对这一问题进行了深入的研究。研究发现当面临高体积气体损失时,流入和流出工作腔的泄漏流会显著影响工作腔内的传热。因而Rak J等提出了一种包括切向泄漏流修正因子的新的努塞尔数关系式,并将计算的结果与数值模型对比误差小于15%。北京理工大学的Zheng S Y等研究了径向间隙和侧壁粗糙度对切向泄漏的影响规律。研究发现由于超临界CO2高密度,切向泄漏对径向间隙的变化会变得非常敏感。与径向间隙为16μm的模型相比,径向间隙为20μm和24μm模型的容积效率分别降低了5.48%和16.35%。由于侧壁粗糙度的增大会有效地增大CO2的流动阻力,模型的容积效率和等熵效率随着侧壁粗糙度逐渐增加而不断增大。

  Zheng S Y等针对CO2涡旋式压缩机径向泄漏的问题,讨论了涡旋齿顶部微槽的几何参数对径向泄漏的影响。结果表明增加槽数和隔板能有效地降低镜像泄漏量,但随着微槽深度的不断增加,径向泄漏量会先减小后增大。Oh S D等对CO2涡旋式压缩机中定涡盘与动涡盘之间的摩擦磨损特性进行了研究。实验结果表明,磨损量会随法向载荷和转速的增加而增加,随表面粗糙度的减小而减小,在该压缩机中使用PAG(多元醇酯)润滑剂比使用POE(聚亚烷基二醇)润滑剂更具优势。

  日本的DENSO公司、松下(MATSUSHITA)公司、三菱重工(MITSUBISHI)公司分别研制并生产了CO2涡旋式压缩机,该种压缩机被广泛应用于CO2热水器中。

  滑片式压缩机属于容积式压缩机的一种。由于其转子表面与划片端部表面存在间隙,因此在工作过程中会存在气体泄漏现象,特别是对于CO2压缩机,泄露相对更大。由于泄漏损失受压缩机转速影响,转速越高压缩机的泄露损失越。


联系方式

杏彩网页平台登录·(中国)娱乐-苹果/安卓/手机版app下载

电话:136-6889-0909

QQ:29159383

电邮:hobbm@www.jlhfzc.com

地址:山东省黄岛区


产品推荐/ RELATED PRODUCTS